Instrumentation challenges for e⁺e⁻ colliders

Marcel Stanitzki
DESY
Snowmass @ Minneapolis
01/August/2013

e⁺e⁻ Machines on the horizon

- ILC
 - Technical Design Report 2013
 Volumes I-IV
- CLIC
 - Conceptual Design Report 2011/12
 Vol I, II, III
- TLEP
 - TLEP: A High-Performance Circular e+e- Collid er to Study the Higgs Boson

 4th International Particle Accelerator Conference (IPAC 2013)

Machine Parameters

	ILC	CLIC	TLEP
√s (GeV)	(91/) 250-1000	350 -3000	91-350
Min Bunch spacing (ns)	366	0.5	
Bunches/Train	2625	312	4400
Collision Rate (Hz)	5	50	
Luminosity (10 ³⁴)	4.9	5.9	56
Number of pairs/BX	~4 x 10 ⁵	~7x10 ⁸	?
$\gamma\gamma \rightarrow hadrons/BX$	4.1	3.6	?

This is always taking the most challenging parameter set ...

It is not just the luminosity

- Bs Oscillations
- ALEPH (LEP)
 - ~ 6 million Z's
- SLD
 - ~ 300000 Z's
- Main advantage of SLD:
 - Pixel Vertex detector
 - Much closer to the IP

Timescales

- This is my personal forecast ...
 - Everyone is entitled to its own crystal sphere
- HL-LHC
 - Start of data taking 2022/3
- ILC
 - Start of data taking 2027/8
- CLIC/TLEP
 - After the end of the HL-LHC program (2030+)
 - ~2035

Detector requirements

- All Lepton machines require
 - Highly granular, low-mass detectors
 - Radiation hardness is mostly not an issue
 - Full angular coverage,
 - Minimizing dead regions & materials
 - Single bunch time resolution
 - Robustness against machine backgrounds

Sub-Detector Requirements

- Exceptional precision
 & time stamping
 - Single Bunch resolution
- Vertex detector
 - < 4 μm precision
 - $\sigma_{r\varphi} \approx 5 \mu m \oplus 10 \mu m/p \sin^{(\frac{3}{2})}(\theta)$
- Tracker
 - $\sigma(1/p) \sim 2.5 \times 10^{-5}$
- Calorimeter
 - $\frac{\sigma_{E_{Jet}}}{E_{Jet}} = 3 4\%$, $E_{Jet} = 50 500$ GeV

Different challenges

- Calorimeter granularity
 - Need factor ~200 better than LHC
- Pixel size
 - Need factor ~20 smaller than LHC
- Material budget, central tracking
 - Need factor ~10 less than LHC
- Material budget, forward tracking
 - Need factor ~ >100 less than LHC

Requirements for Timing, Data rate and Radiation hardness are very modest compared to LHC

Proposed detectors for the ILC

- Both SiD and ILC built with Particle Flow in mind
 - Drives the entire design
- CLIC uses variants (CLIC_SiD, CLIC_ILD) adapted for 3 TeV operations

TLEP so far used CMS for simulations

Detector R&D status

- SiD and ILD designs have been extensively reviewed by external experts
 - International detector advisory group (ILC)
 - CDR Review group (CLIC)
- For many systems, SiD and ILD are clearly beyond "proof-of-principle"
 - Documented in the Detailed Baseline Designs of the ILC TDR
 - Exception is the Vertex detector, this is an open issue
- SiD and ILD have "Baseline Designs"
 - Remain open for new ideas

Main R&D issues

- Focus is moving towards System issues
 - Powering schemes
 - Cooling & Thermal management
 - Mechanics & Material budget
 - Interconnects
 - DAQ
- Nanosecond-Timestamping remains important R&D goal for CLIC

Vertex Detector

- Neither concept has selected a baseline
 - No technology is just there yet
- Requirements
 - <20 x 20 μm pixels, time stamping, ultra-thin, lowpower
- Many ideas on the market
 - Monolithic Active Pixel sensors (MAPS)
 - DEPFET
 - Fine-pitch CCD's
 - 3D Pixels
 - Hybrid pixels (mainly for CLIC)

Vertexing for CLIC

- CLIC environment makes the Vertex Detector a tad more challenging
 - 0.5 ns time stamping
 - Machine backgrounds for Multi-TeV runs
- 3-4μm point resolution,
- 10 ns/ $\sqrt{12}$) time resolution,
- <0.2%X₀ per layer implying
 - low-power design,
 - power pulsing
 - gas cooling

PFA calorimetry

- Implementing a successful PFA system is both a hardware and a software challenge
- Requires an integrated approach to detector design: tracking
 ⊕ calorimetry
- Intense R&D Effort the last ten years

PFA HCAL

- RPC-based Digital HCAL
 - Lead by ANL
- 1 m³ Stack
 - 1x 1 cm² cell size
 - 500000 channels
- Scintillator-based analog HCAL
 - Lead by DESY
- Proof of principle made
- PFA successfully applied to test beam data

Power Pulsing

- A key component of all ILC/CLIC detectors
 - Using duty cycles e.g. ILC case
 - 199 ms quiet
 - -1 ms live
 - Powering down "front-end during quiet- time
 - Factor O(100) power saving
- Proof-of-principle straightforward
- System-level studies have only started
 - Need to understand impact of pulsing millions of channels..

Material budget

- Goal
 - 20 % X/X₀
- Required
 - Lightweight rigid structures
 - Gas cooling
 - Eliminating hybrids
 - Power conversion (DC-DC)
- Can we use new lightweight materials?

The Challenging questions

Energy Frontier → Instrumentation Frontier

- In some studies for ILC and CLIC, the sophistication of particle flow calorimetry approaches the ability to resolve single hadrons. At what point does the evolution of particle flow calorimetry give a qualitative, rather than just a quantitative, boost to experimental capabilities? Can we realistically reach this point?
- In the context of proposals of large tunnels that could host both pp and e+e-colliders, it is interesting to ask whether it is possible to design 4 pi detectors that can be used both for pp and e+e- experiments (perhaps with some interchangable inner tracking layers). Is there an optimal design of such a multi-purpose detector? What are the most important compromises required?

Instrumentation Frontier → Energy Frontier

- how important is fast time stamping of the signals from the detector? For which detector parts would this be most important calorimeter? tracker?
- how important is the forward region, how far in η do we need to cover?
- how important is high b-tagging efficiency at low pT/at high pT?, what can we
 do with better Vtx resolution

Re-using detectors

- Hadron collider
 - Fast BX (25 ns)
 - Radiation hard
 - Fancy trigger system

- Lepton collider
 - Relaxed BX
 - Radiation soft
 - No/simple trigger
- Tracker/Vertexing need to be exchanged for sure
- Calorimetry may be also ...
- Differences in Timing and trigger will require significant exchange of electronics ...
- Power & cooling needs will be different

Taking this into account

- The Breidenbach Model
- Steel and Solenoid can be re-used
 - About 150 Mio \$ savings
- Everything inside will be exchanged
 - e⁺e⁻ Slide-In
 - Hadron Slide-In
- This is probably the most sensible way to do
 - Price of two optimized detectors ~1000 Mio US-\$
 - Slide-In approach ~ 850 Mio US-\$
- In any way, you'll end up with a non-optimal detector for either case

Additional improvements for PFA

- Established the 3.5% Goal for ILC physics
 - Do we need to better?
 - Do we gain further capabilities?
- Considered
 - W/Z separation, see next slide
 - Hadronic resonances will benefit from better resolution
 - Event-based reconstruction (e.g π^0 reconstruction)
 - Particle-ID inside jets

W/Z separation

© M. Thomson

Quantify by effective W/Z separation

W/Z sep =	(m_Z-m_W)	σ_m
-----------	-------------	------------

Jet E res.	W/Z sep
perfect	3.1 σ
2%	2.9 σ
3%	2.6 σ
4%	2.3 σ
5%	2.0 σ
10%	1.1 σ

Defined as effective Gaussian equivalent Mass resolution

- 3 4 % jet energy resolution give decent W/Z separation 2.6 2.3 σ
- sets a reasonable choice for Lepton Collider jet energy minimal goal ~3.5 %
- for W/Z separation, not much to gain beyond this as limited by W/Z widths

PFA conclusions

- Reaching the 3 % Jet Energy resolution
 - Game-changing
- Go significantly below
 - We of course gain
 - Lot's of things one could do to take advantage of this
- Ultimately, going from 3 to 1 % won't have the same impact
 - Unless some new physics demands this

What can we do with ps timestamping

- Nanosecond time stamping is really needed at CLIC
- Beyond nanosecond level
 - Difficult to see a real need right now
- Potential ideas
 - Particle ID
 - Timing for PFA reconstruction
- Balance these with the power budget

Nanosecond Time Stamping@CLIC

- Timing cuts rely on precise time stamping
 - >10 ns in the tracker
 - 1 ns in the calorimeter

η Coverage

- e⁺e⁻ does not deal in η
- Forward coverage is important
 - t-channel processes at higher energy
- Detectors
 - Full tracking down to 8 degrees
- Can always do better
 - Limited by final focus system

Vertexing resolution

- Present Vertexing resolution already impressive
 - Very performant flavor tag
- What would a factor of ten bring?
 - Increased c-tagging performance
 - B-tagging is already very performant

Limited by e.g. beampipe radius

Conclusions

- For ILC/CLIC Detectors, start looking at system issues
 - Years of intense R&D effort worldwide
- Vertex Detector technology
 - Not quite there yet, active area of R&D
- Thanks to
 - Jim Brau, Marty Breidenbach, Norman Graf, Ulrich Heintz, Lucie Linssen, Felix Sefkow, Mark Thomson, Andy White, Graham Wilson for discussion and material

